Isolation and Partial Synthesis of $3(R)$ - and $3(S)$-Deoxypumiloside; Structural Revision of the Key Metabolite from the Camptothecin Producing Plant, Ophiorrhiza pumila

Mariko Kitajima, Seiji Masumoto, Hiromitsu Takayama, and Norio Aimi*

Faculty of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263, Japan.

Abstract

Both the C-3 epimeric pair of $3(R)$ - and $3(S)$-deoxypumiloside were found in Ophiorrhiza pumila (Rubiaceae), a source plant of camptothecinoid metabolites. These structures were confirmed by spectroscopic analysis and partial stereoselective syntheses. The configuration at $\mathrm{C}-3$ of the previously reported "deoxypumiloside" is revised to $3(R)$ from 3(S). © 1997 Elsevier Science Ltd.

Camptothecin (1) is a natural molecule well-known for its potent biological properties such as inhibitory activities against tumor cells and DNA topoisomerase I^{1} and activity against HIV-1.2 From a biogenetic point of view, camptothecin (1) possessing a quinoline skeleton has been shown to be formed from the indole alkaloid, strictosidine (2). ${ }^{3-5}$ Although strictosamide (3), a lactam derivative of strictosidine, was reported to be a biogenetic precursor of camptothecin, ${ }^{3-5}$ "poststrictosamide biosynthetic events", so named by Hatchinson, have not yet been clarified. During our chemical investigation of camptothecin (1), we have found

Camptothecin (1)

Pumiloside (4)

$3 \mathrm{H}-\beta: 3(R)$-Deoxypumiloside (5)
("Deoxypumiloside")
$3 \mathrm{H}-\alpha: 3(S)$-Deoxypumiloside (6)

that Ophiorrhiza pumila (Rubiaceae) produces not only camptothecin but also a variety of camptothecinrelated alkaloids. ${ }^{6-8}$ Among them, pumiloside (4) ${ }^{7}$ and deoxypumiloside ${ }^{7}$ were considered to be biogenetic intermediates to camptothecin (1). Pumiloside (4) was also found in Camptotheca acuminata by Hecht and reported independently. ${ }^{9}$ The presence of these hybrid-type molecules suggested that camptothecin formation from strictosamide (3) starts from the A / B ring conversion of the indole to a quinoline skeleton followed by D and E ring transformations. In order to find new secondary methabolites, which would produce further evidence for the camptothecin biosynthesis, an exhaustive investigation of the constituents in O. pumila was carried out. In this paper, we describe the isolation of both $3(R)$ - and $3(S)$-deoxypumiloside as their tetraacetates and the unequivocal structural clarification by spectroscopic and synthetic methods.

Acetylation of a crude natural deoxypumiloside fraction, which was isolated from O. pumila, led to the isolation of two acetates (7^{10} and 8^{11}) in the ratio of $3: 1$. Both of the products exhibited the same UV absorptions ($320,313,306,300,293,236,204 \mathrm{~nm}$) and the molecular formula ($\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{12}$) which agreed with the anticipated data of deoxypumiloside tetraacetate. The ${ }^{13} \mathrm{C}$-NMR spectra of 7 and 8 were very similar except for the chemical shifts of the C-15 carbons (7: $\delta 28.3 \mathrm{ppm}, \mathbf{8}: \delta 23.8 \mathrm{ppm}$). Furthermore, the CD spectra of 7 and 8 showed the opposite cotton effect in the region between $320-270 \mathrm{~nm}$. These data clearly show 7 and 8 as epimeric isomers; most likely they are epimers at C-3. For elucidation of their configurations, careful NOE experiments were done. An irradiation of $15-\mathrm{H}(\delta 3.08)$ in 7 led to enhancement (10%) of the peak intensity of $3-\mathrm{H}(\delta 5.01)$, indicating that this compound has a $3(R)$-configuration ($3 \mathrm{H}-\boldsymbol{\beta}$). On the other hand, an irradiation of $3-\mathrm{H}(\delta 4.73)$ of the minor compound 8 led to enhancement (4%) of the peak intensity of $19-\mathrm{H}(\delta$ 5.80), indicating that it is the $3(S)$-congener $(3 \mathrm{H}-\alpha)$.

To confirm these structures, we next undertook the partial syntheses of both deoxypumilosides using vincoside lactam (9) and strictosamide (3) as the starting materials, respectively. 3(R)-Pumiloside tetraacetate (10) was prepared from 9 by a three-step operation in 65% yield. ${ }^{7}$ Thus, 10 was treated with LDA and then with N-phenyltrifluoromethanesulfonimide ${ }^{12}$ in THF-HMPA at $-78 \sim 0^{\circ} \mathrm{C}$ to give the enol triflate 11 in 89% yield. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the peak of $N_{\mathrm{a}}-\mathrm{H}$ disappeared and the methylene protons on C-5 shifted to a lower field ($\delta 5.50,4.82$) compared with those of $10(\delta 5.08,4.55)$. UV absorptions of $11(321,308,236,205$ nm) were similar to those of $3(R)$-deoxypumiloside tetraacetate (7). These observations indicated that the trifluoromethanesulfonyl group was introduced to the oxygen at the C-7 position to form enol triflate. 11 thus

obtained was treated with palladium acetate, 1,1'-bis(diphenylphosphino)-ferrocene (DPPF), triethylamine and formic acid ${ }^{13}$ in dioxane at $60^{\circ} \mathrm{C}$ to afford the deoxygenated compound 7 in 80% yield. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, a singlet peak due to $7-\mathrm{H}$ was observed at $\delta 8.07$. Spectroscopic data (UV, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{MS}, \mathrm{CD}$) of the synthetic compound were identical with those of the acetate of deoxypumiloside that we obtained from O. pumila and was reported in Tetrahedron Letters in 1990. ${ }^{7}$ The present results clearly indicate that the formerly deduced stereochemistry is erroneous and the configuration of $\mathrm{C}-3$ of "deoxypumiloside" should be revised from $\mathrm{C}-3(S)$ to $\mathrm{C}-3(R)$. This conclusion is further substantiated by a parallel stereoselective conversion. $3(S)$-Deoxypumiloside tetraacetate (8) was prepared from strictosamide (3), which possesses the $3 \alpha-\mathrm{H}$ configuration, via the reductive deoxygenation at the $\mathrm{C}-7$ position in $3(S)$-pumiloside tetraacetate (12). The synthetic compound 8 was identified as $3(S)$-deoxypumiloside tetraacetate, the minor acetate that was obtained as the minor congener during acetylation of the crude "deoxypumiloside" fraction of O. pumila. From these synthetic studies, the absolute stereochemistry of both deoxypumilosides was unambiguously established.

In conclusion, we found that O. pumila produces both the $3(R)$ - and $3(S)$-deoxypumiloside (5 and 6). We now abandon the name "deoxypumiloside", and this name appearing in previous literature ${ }^{6,7}$ should be changed to read $3(R)$-deoxypumiloside (5) hereafter. The structure of each tetraacetate compound including the absolute configuration was confirmed by spectroscopic data and partial syntheses. The findings that both the $3(R)$ - and $3(S)$-deoxypumiloside are present in O. pumila and that $3(R)$-deoxypumiloside is more richly abundant than the $3(S)$ congener are quite important in further clarification of the camptothecin biosynthesis.

Acknowledgment: Our thanks are due to the Ministry of Education, Science, Sports and Culture, Japan, for a Grant-in-Aid for Scientific Research (No. 08457578).

References and Note

1. Wang, J. C. Ann. Rev. Biochem., 1985, 54, 665-697.
2. Priel, E.; Blair, D. G.; Showalter, S. D. U. S. PAT. APPL., 31 pp. avail. NTIS, order No. PAT-APPL-7-520 456.
3. Hutchinson, C. R. Tetrahedron, 1981, 37, 1047-1065.
4. Cai, J.-C.; Hutchinson, C. R. in The Alkaloids, Brossi, A., ed., Academic Press Inc., New York, 1983, Vol 21, pp. 101-137.
5. Wall, M. E.; Wani, M. C. in The Monoterpenoid Indole Alkaloids, Capter 13, (Saxton, J. E., ed.), John Wiley \& Sons Ltd., London. 1994, pp. 689-713.
6. Aimi, N.; Nishimura, M.; Miwa, A.; Hoshino, H.; Sakai, S.; Haginiwa, J. Tetrahedron Lett., 1989, 30, 4991-4994.
7. Aimi, N.; Hoshino, H.; Nishimura, M.; Sakai, S.; Haginiwa, J. Tetrahedron Lett. 1990, 31, 5169-5172.
8. Aimi, N.; Ueno, M.; Hoshino, H.; Sakai, S. Tetrahedron Lett., 1992, 33, 5403-5404.
9. Carte, B. K.; DeBrosse, C.; Eggleston, D.; Hemling M.; Mentzer, M.; Poehland, B.; Troupe, N.; Westley, J. W.; Hecht, S. M. Tetrahedron, 1990, 46, 2747-2760
10. 3(R)-Deoxypumiloside tetraacetate (7): HR-MS (NBA) m/z: 665.2357 (Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{12}: 665.2347$); FABMS (NBA) $m / z(\%): 665\left(\mathrm{MH}^{+}, 60\right), 154(100) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, 12-\mathrm{H}), 8.07$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.83(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}, 9-\mathrm{H}), 7.72(\mathrm{ddd}, 1 \mathrm{H}, J=8.6,7.1,1.5 \mathrm{~Hz}, 11-\mathrm{H}), 7.55(\mathrm{ddd}, 1 \mathrm{H}, J=8.2$, $7.1,1.3 \mathrm{~Hz}, 10-\mathrm{H}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, 17-\mathrm{H}), 5.47(\mathrm{ddd}, 1 \mathrm{H}, J=17.3,9.9,9.9 \mathrm{~Hz}, 19-\mathrm{H}), 5.34(\mathrm{~d}, \mathrm{IH}, J=1.9$ $\mathrm{Hz}, 21-\mathrm{H}), 5.33-5.29(\mathrm{br}-\mathrm{d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz}, 5-\mathrm{H}), 5.31(\mathrm{dd}, 1 \mathrm{H}, J=17.1,2.0 \mathrm{~Hz}, 18 \mathrm{~B}-\mathrm{H}), 5.27(\mathrm{dd}, 1 \mathrm{H}, J=9.4,9.4$ $\left.\mathrm{Hz}, 3^{\prime}-\mathrm{H}\right), 5.18(\mathrm{dd}, 1 \mathrm{H}, J=10.0,1.9 \mathrm{~Hz}, 18 \mathrm{~A}-\mathrm{H}), 5.12(\mathrm{dd}, 1 \mathrm{H}, J=9.8,9.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.05(\mathrm{dd}, 1 \mathrm{H}, J=9.5,8.1 \mathrm{~Hz}$, $\left.2^{\prime}-\mathrm{H}\right), 5.01(\mathrm{dd}, 1 \mathrm{H}, J=11.2,3.0 \mathrm{~Hz}, 3-\mathrm{H}), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.71(\mathrm{dd}, 1 \mathrm{H}, J=16.6,1.2 \mathrm{~Hz}, 5-\mathrm{H}), 4.32$ $\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.7 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,2.2 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 3.78\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,4.7,2.2 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $3.08(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{H}), 2.82(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,5.6,1.8 \mathrm{~Hz}, 20-\mathrm{H}), 2.66(\mathrm{ddd}, 1 \mathrm{H}, J=12.9,3.6,3.6 \mathrm{~Hz}, 14 \beta-\mathrm{H}), 2.11$, $2.04,2.02$ and 2.01 (each $\mathrm{s}, 3 \mathrm{H}, 3 \times \mathrm{OAc}$), $1.55(\mathrm{ddd}, 1 \mathrm{H}, J=12.9,12.3,12.3 \mathrm{~Hz}, 14 \alpha-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta: 161.8(\mathrm{C}-2), 61.5(\mathrm{C}-3), 48.5(\mathrm{C}-5), 128.0(\mathrm{C}-6), 130.0(\mathrm{C}-7), 127.7(\mathrm{C}-8), 127.9(\mathrm{C}-9), 126.7(\mathrm{C}-10)$, 129.5 (C-11), 129.0 (C-12), 148.2 (C-13), 30.0 (C-14), 28.3 (C-15), 108.4 (C-16), $146.8(\mathrm{C}-17), 120.8(\mathrm{C}-18), 131.5$ (C-19), $42.9(\mathrm{C}-20), 96.4(\mathrm{C}-21), 162.8(\mathrm{C}-22), 96.1\left(\mathrm{C}-1^{\prime}\right), 70.6\left(\mathrm{C}-2^{\prime}\right), 72.4\left(\mathrm{C}-3^{\prime}\right), 68.2\left(\mathrm{C}-4^{\prime}\right), 72.3\left(\mathrm{C}-5^{\prime}\right), 61.8(\mathrm{C}-$ 6'), 20.74 and 20.65 (each CO-Me), 20.57 ($2 \times \mathrm{CO}-\mathrm{Me}$), 170.6 and 170.1 (each CO-Me), 169.4 ($2 \times \mathrm{CO}-\mathrm{Me}$); CD (c $\left.=0.21 \mathrm{mmol} / \mathrm{l}, \mathrm{MeOH}, 21^{\circ} \mathrm{C}\right) \Delta \varepsilon(\lambda \mathrm{nm}): 0(330),+1.46(320),+0.29(317),+0.88(313),+0.29(310),+1.17$ (307), $+0.58(303),+6.56(276), 0(266),-16.62(247),-27.12(238), 0(225),-2.33(218), 0(213),+5.83(208)$.
11. $3(S)$-Deoxypumiloside tetraacetate (8) : HR-MS (NBA) $m / z: 665.2347$ (Calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{12}: 665.2347$); FABMS (NBA) $m / z(\%): 665\left(\mathrm{MH}^{+}, 100\right), 154(85) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.08(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, 12-\mathrm{H}), 8.07$ $(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, 9-\mathrm{H}), 7.71(\mathrm{ddd}, 1 \mathrm{H}, J=8.3,6.9,1.4 \mathrm{~Hz}, 11-\mathrm{H}), 7.56(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,6.9,1.0$ $\mathrm{Hz}, 10-\mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, 17-\mathrm{H}), 5.80(\mathrm{ddd}, 1 \mathrm{H}, J=17.0,9.9,9.9 \mathrm{~Hz}, 19-\mathrm{H}), 5.51(\mathrm{dd}, 1 \mathrm{H}, J=17.2,1.9$ $\mathrm{Hz}, 18 \mathrm{~B}-\mathrm{H}), 5.05-4.98(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, 21-\mathrm{H}), 5.27(\mathrm{dd}, 1 \mathrm{H}, J=9.5,9.5 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{H}), 5.40(\mathrm{dd}$, $1 \mathrm{H}, J=10.2,1.6 \mathrm{~Hz}, 18 \mathrm{~A}-\mathrm{H}), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J=9.8,9.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 5.03\left(\mathrm{dd}, 1 \mathrm{H}, J=9.2,8.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.98(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=8.1 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.78(\mathrm{dd}, 1 \mathrm{H}, J=16.5,1.1 \mathrm{~Hz}, 5-\mathrm{H}), 4.73(\mathrm{dd}, 1 \mathrm{H}, J=7.9,4.1 \mathrm{~Hz}, 3-\mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H}, J=12.5,2.2$ $\left.\mathrm{Hz}, 6^{\prime}-\mathrm{H}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.4 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 3.77\left(\mathrm{ddd}, 1 \mathrm{H}, J=10.0,4.7,2.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 3.15(\mathrm{~m}, 1 \mathrm{H}, 15-\mathrm{H}), 2.72$ (ddd, $1 \mathrm{H}, J=9.5,5.3,1.4 \mathrm{~Hz}, 20-\mathrm{H}), 2.62(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0 \mathrm{~Hz}, 14 \alpha-\mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}, 14 \beta-\mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ OAc), 2.04 and 2.01 (each $\mathrm{s}, 3 \mathrm{H}, 2 \times \mathrm{OAc}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.9(\mathrm{C}-2), 60.2(\mathrm{C}-3), 47.9(\mathrm{C}-5)$, 128.0 (C-6), 130.4 (C-7), 127.6 (C-8), 127.9 (C-9), 126.7 (C-10), 129.5 (C-11), 129.1 (C-12), 148.2 (C-13), 28.8 (C14), $23.8(\mathrm{C}-15), 110.4(\mathrm{C}-16), 145.1(\mathrm{C}-17), 121.6(\mathrm{C}-18), 131.4(\mathrm{C}-19), 43.8(\mathrm{C}-20), 96.3(\mathrm{C}-21), 165.2(\mathrm{C}-22)$, 96.1 ($\mathrm{C}-\mathrm{I}^{\prime}$), 70.4 (C-2'), 72.4 (C-3'), 68.1 ($\mathrm{C}-4^{\prime}$), 72.2 (C-5'), 61.7 (C-6'), 20.8 and 20.7 (each CO-Me), 20.6 ($2 \times \mathrm{CO}-$ $M e), 170.6,170.1,169.9$ and 169.4 (each $\mathrm{CO}-\mathrm{Me}) ; \mathrm{CD}\left(\mathrm{c}=0.15 \mathrm{mmol} / \mathrm{l}, \mathrm{MeOH}, 21^{\circ} \mathrm{C}\right) \Delta \varepsilon(\lambda \mathrm{nm}): 0(325),-1.01$ (320), $-0.40(317),-0.81(313),-0.40(310),-0.60(307),-0.20(300),-25.15(238), 0(227),+3.62(218),+10.87$ (206).
12. Zheng, Q.; Yang, Y.; Martin, A. R. Heterocycles, 1994, 37, 1761-1772.
13. Cacchi, C.; Gattini, P. G.; Morea, E.; Orter G. Tetrahedron Lett., 1986, 27, 5541-5544.
(Received in Japan 10 April 1997; revised 28 April 1997; accepted 2 May 1997)
